Responses of the Metabolism of the Larvae of Pocillopora damicornis to Ocean Acidification and Warming
نویسندگان
چکیده
Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075 ± 0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.
منابع مشابه
Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals
As climate change challenges organismal fitness by creating a phenotype-environment mismatch, phenotypic plasticity generated by epigenetic mechanisms (e.g., DNA methylation) can provide a temporal buffer for genetic adaptation. Epigenetic mechanisms may be crucial for sessile benthic marine organisms, such as reef-building corals, where ocean acidification (OA) and warming reflect in strong ne...
متن کاملTemperature Dependence of Respiration in Larvae and Adult Colonies of the Corals Acropora tenuis and Pocillopora damicornis
Although algal symbionts can become a source of reactive oxygen species under stressful conditions, symbiotic planulae of the coral Pocillopora damicornis are highly tolerant to thermal stress compared with non-symbiotic planulae of Acropora tenuis. As a first step to understand how P. damicornis planulae attain high stress tolerance, we compared the respiration rate and temperature dependence ...
متن کاملElevated Temperature Alters the Lunar Timing of Planulation in the Brooding Coral Pocillopora damicornis
Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatur...
متن کاملPreconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions.
Coral reefs are globally threatened by climate change-related ocean warming and ocean acidification (OA). To date, slow-response mechanisms such as genetic adaptation have been considered the major determinant of coral reef persistence, with little consideration of rapid-response acclimatization mechanisms. These rapid mechanisms such as parental effects that can contribute to trans-generationa...
متن کاملVibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis.
Vibrio sp. YB1T (=ATCC BAA-450T =LMG 20984T), the aetiological agent of tissue lysis of the coral Pocillopora damicornis, was characterized as a novel Vibrio species on the basis of 16S rDNA sequence, DNA-DNA hybridization data (G + C content is 45.6 mol%), AFLP and GTG5-PCR genomic fingerprinting patterns and phenotypic properties, including the cellular fatty acid profile. The predominant fat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014